Extended base pair complementarity between U1 snRNA and the 5′ splice site does not inhibit splicing in higher eukaryotes, but rather increases 5′ splice site recognition
نویسندگان
چکیده
Spliceosome formation is initiated by the recognition of the 5' splice site through formation of an RNA duplex between the 5' splice site and U1 snRNA. We have previously shown that RNA duplex formation between U1 snRNA and the 5' splice site can protect pre-mRNAs from degradation prior to splicing. This initial RNA duplex must be disrupted to expose the 5' splice site sequence for base pairing with U6 snRNA and to form the active spliceosome. Here, we investigated whether hyperstabilization of the U1 snRNA/5' splice site duplex interferes with splicing efficiency in human cell lines or nuclear extracts. Unlike observations in Saccharomyces cerevisiae, we demonstrate that an extended U1 snRNA/5' splice site interaction does not decrease splicing efficiency, but rather increases 5' splice site recognition and exon inclusion. However, low complementarity of the 5' splice site to U1 snRNA significantly increases exon skipping and RNA degradation. Although the splicing mechanisms are conserved between human and S.cerevisiae, these results demonstrate that distinct differences exist in the activation of the spliceosome.
منابع مشابه
Extended base pair complementarity between U 1 snRNA and the 5 0 splice site does not inhibit splicing in higher eukaryotes , but rather increases 5 0 splice site recognition
Spliceosome formation is initiated by the recognition of the 50 splice site through formation of an RNA duplex between the 50 splice site and U1 snRNA. We have previously shown that RNA duplex formation between U1 snRNA and the 50 splice site can protect pre-mRNAs from degradation prior to splicing. This initial RNA duplex must be disrupted to expose the 50 splice site sequence for base pairing...
متن کاملMechanism for cryptic splice site activation during pre-mRNA splicing.
The 5' splice site of a pre-mRNA is recognized by U1 small nuclear ribonucleoprotein particles (snRNP) through base pairing with the 5' end of U1 small nuclear RNA (snRNA). Single-base substitutions within a 9-nucleotide 5'-splice-site sequence can abolish or attenuate use of that site and, in higher eukaryotes, can also activate nearby "cryptic" 5' splice sites. Here we show that the effects o...
متن کاملThe U1, U2 and U5 snRNAs crosslink to the 5′ exon during yeast pre-mRNA splicing
Activation of pre-messenger RNA (pre-mRNA) splicing requires 5' splice site recognition by U1 small nuclear RNA (snRNA), which is replaced by U5 and U6 snRNA. Here we use crosslinking to investigate snRNA interactions with the 5' exon adjacent to the 5' splice site, prior to the first step of splicing. U1 snRNA was found to interact with four different 5' exon positions using one specific seque...
متن کاملIn vitro splicing of mRNA precursors: 5' cleavage site can be predicted from the interaction between the 5' splice region and the 5' terminus of U1 snRNA.
Combinations of different mutations within the 5' splice region of the rabbit beta-globin large intron were analyzed for their effect on in vitro splicing. Based upon the complementarity of the 5' splice region to the 5' terminal region of the U1 snRNA, the exact location of the 5' cleavage site of different mutants could be predicted and was experimentally confirmed. These findings add further...
متن کاملA U1 snRNA:pre-mRNA base pairing interaction is required early in yeast spliceosome assembly but does not uniquely define the 5' cleavage site.
We analyzed the effects of suppressor mutations in the U1 snRNA (SNR19) gene from Saccharomyces cerevisiae on the splicing of mutant pre-mRNA substrates. The results indicate that pairing between U1 snRNA and the highly conserved position 5 (GTATGT) of the intron occurs early in spliceosome assembly in vitro. This pairing is important for efficient splicing both in vitro and in vivo. However, p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic Acids Research
دوره 33 شماره
صفحات -
تاریخ انتشار 2005